497 research outputs found

    Entropy production of cyclic population dynamics

    Full text link
    Entropy serves as a central observable in equilibrium thermodynamics. However, many biological and ecological systems operate far from thermal equilibrium. Here we show that entropy production can characterize the behavior of such nonequilibrium systems. To this end we calculate the entropy production for a population model that displays nonequilibrium behavior resulting from cyclic competition. At a critical point the dynamics exhibits a transition from large, limit-cycle like oscillations to small, erratic oscillations. We show that the entropy production peaks very close to the critical point and tends to zero upon deviating from it. We further provide analytical methods for computing the entropy production which agree excellently with numerical simulations.Comment: 4 pages, 3 figures and Supplementary Material. To appear in Phys. Rev. Lett.

    Inflation with a graceful exit and entrance driven by Hawking radiation

    Full text link
    We present a model for cosmological inflation which has a natural "turn on" and a natural "turn off" mechanism. In our model inflation is driven by the Hawking-like radiation that occurs in Friedman-Robertson-Walker (FRW) space-time. This Hawking-like radiation results in an effective negative pressure "fluid" which leads to a rapid period of expansion in the very early Universe. As the Universe expands the FRW Hawking temperature decreases and the inflationary expansion turns off and makes a natural transition to the power law expansion of a radiation dominated universe. The "turn on" mechanism is more speculative, but is based on the common hypothesis that in a quantum theory of gravity at very high temperatures/high densities Hawking radiation will stop. Applying this speculation to the very early Universe implies that the Hawking-like radiation of the FRW space-time will be turned off and therefore the inflation driven by this radiation will turn off.Comment: 19 pages, 2 figures revtex, matches PRD published versio

    Spot deformation and replication in the two-dimensional Belousov-Zhabotinski reaction in water-in-oil microemulsion

    Full text link
    In the limit of large diffusivity ratio, spot-like solutions in the two-dimensional Belousov-Zhabotinski reaction in water-in-oil microemulsion are studied. It is shown analytically that such spots undergo an instability as the diffusivity ratio is decreased. An instability threshold is derived. For spots of small radius, it is shown that this instability leads to a spot splitting into precisely two spots. For larger spots, it leads to deformation, fingering patterns and space-filling curves. Numerical simulations are shown to be in close agreement with the analytical predictions.Comment: To appear, PR

    Critical voltage of a mesoscopic superconductor

    Get PDF
    We study the role of the quasiparticle distribution function f on the properties of a superconducting nanowire. We employ a numerical calculation based upon the Usadel equation. Going beyond linear response, we find a non-thermal distribution for f caused by an applied bias voltage. We demonstrate that the even part of f (the energy mode f_L) drives a first order transition from the superconducting state to the normal state irrespective of the current

    Stochastic thermodynamics under coarse-graining

    Get PDF
    A general formulation of stochastic thermodynamics is presented for open systems exchanging energy and particles with multiple reservoirs. By introducing a partition in terms of "macrostates" (e.g. sets of "microstates"), the consequence on the thermodynamic description of the system is studied in detail. When microstates within macrostates rapidly thermalize, the entire structure of the microscopic theory is recovered at the macrostate level. This is not the case when these microstates remain out of equilibrium leading to additional contributions to the entropy balance. Some of our results are illustrated for a model of two coupled quantum dots.Comment: 12 pages, 3 figure

    Hydrodynamical evolution near the QCD critical end point

    Full text link
    Hydrodynamical calculations have been successful in describing global observables in ultrarelativistic heavy ion collisions, which aim to observe the production of the quark-gluon plasma. On the other hand, recently, a lot of evidence that there exists a critical end point (CEP) in the QCD phase diagram has been accumulating. Nevertheless, so far, no equation of state with the CEP has been employed in hydrodynamical calculations. In this paper, we construct the equation of state with the CEP on the basis of the universality hypothesis and show that the CEP acts as an attractor of isentropic trajectories. We also consider the time evolution in the case with the CEP and discuss how the CEP affects the final state observables, such as the correlation length, fluctuation, chemical freezeout, kinetic freezeout, and so on. Finally, we argue that the anomalously low kinetic freezeout temperature at the BNL Relativistic Heavy Ion Collider suggests the possibility of the existence of the CEP.Comment: 13 pages, 12 figures, accepted for publication in Physical Review

    Thermodynamics of Chemical Waves

    Get PDF
    Chemical waves constitute a known class of dissipative structures emerging in reaction-diffusion systems. They play a crucial role in biology, spreading information rapidly to synchronize and coordinate biological events. We develop a rigorous thermodynamic theory of reaction-diffusion systems to characterize chemical waves. Our main result is the definition of the proper thermodynamic potential of the local dynamics as a nonequilibrium free energy density and establishing its balance equation. This enables us to identify the dynamics of the free energy, of the dissipation, and of the work spent to sustain the wave propagation. Two prototypical classes of chemical waves are examined. From a thermodynamic perspective, the first is sustained by relaxation towards equilibrium and the second by nonconservative forces generated by chemostats. We analytically study step-like waves, called wavefronts, using the Fisher-Kolmogorov equation as representative of the first class and oscillating waves in the Brusselator model as representative of the second. Given the fundamental role of chemical waves as message carriers in biosystems, our thermodynamic theory constitutes an important step toward an understanding of information transfers and processing in biology.Comment: 12 pages, 2 figure

    Monotone return to steady nonequilibrium

    Full text link
    We propose and analyze a new candidate Lyapunov function for relaxation towards general nonequilibrium steady states. The proposed functional is obtained from the large time asymptotics of time-symmetric fluctuations. For driven Markov jump or diffusion processes it measures an excess in dynamical activity rates. We present numerical evidence and we report on a rigorous argument for its monotonous time-dependence close to the steady nonequilibrium or in general after a long enough time. This is in contrast with the behavior of approximate Lyapunov functions based on entropy production that when driven far from equilibrium often keep exhibiting temporal oscillations even close to stationarity.Comment: Accepted for publication in Phys. Rev. Let

    Energy and entropy of relativistic diffusing particles

    Full text link
    We discuss energy-momentum tensor and the second law of thermodynamics for a system of relativistic diffusing particles. We calculate the energy and entropy flow in this system. We obtain an exact time dependence of energy, entropy and free energy of a beam of photons in a reservoir of a fixed temperature.Comment: 14 pages,some formulas correcte

    Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium

    Get PDF
    Understanding the general principles underlying strongly interacting quantum states out of equilibrium is one of the most important tasks of current theoretical physics. With experiments accessing the intricate dynamics of many-body quantum systems, it is paramount to develop powerful methods that encode the emergent physics. Up to now, the strong dichotomy observed between integrable and nonintegrable evolutions made an overarching theory difficult to build, especially for transport phenomena where space-time profiles are drastically different. We present a novel framework for studying transport in integrable systems: hydrodynamics with infinitely many conservation laws. This bridges the conceptual gap between integrable and nonintegrable quantum dynamics, and gives powerful tools for accurate studies of space-time profiles. We apply it to the description of energy transport between heat baths, and provide a full description of the current-carrying nonequilibrium steady state and the transition regions in a family of models including the Lieb-Liniger model of interacting Bose gases, realized in experiments
    • …
    corecore